Top cross section measurement in the lepton+jets channel with b-tagging at DØ

Alexander Khanov

University of Rochester

for the DØ collaboration

W&C Seminar, September 10, 2004

Motivation

- the knowledge on top quark properties from Run I data has been severely affected by the small statistics available. This should not be an issue in Run II with the large anticipated data samples
- the measurement of the $t\bar{t}$ cross section is a good test of perturbative QCD
- New Physics may manifest itself in top production (e.g. $t\bar{t}$ resonance) or decay (e.g. $t \to H^+b$)
- studies of top production are important in the LHC perspective where $t\bar{t}$ is a dominant background to many searches for new physics

$t\bar{t}$ production in lepton+jets mode

• at the Tevatron, top quarks are mostly produced in pairs $(t\bar{t})$

- in the Standard Model, top almost always decays to Wb
- as W may decay hadronically or leptonically, there are dilepton, lepton+jets, and all jets $t\bar{t}$ channels

- look at the lepton+jets channel:
 - large statistics compared to dileptons
 - clear signature compared to all jets
- the purity of the lepton+jets channel is not that high as for dileptons, need a method to increase the fraction of the signal
- one approach used since Run I is the topological selection
- in the present analysis use *b*-tagging (*b*-jet identification)

DØ detector in Run II

Silicon Microstrip Tracker

impact parameter resolution in data: $\sigma(d_0) = 11 + 42~{
m GeV}/p_T~\mu{
m m}$

Event selection

• The signature:

- a lepton+jet trigger
- a p_T >20 GeV isolated lepton within $|\eta|$ <1.1 (e) or $|\eta|$ <2 (μ)
- high missing E_T (20 GeV for e+jets, 17 GeV for μ +jets)
- at least three jets with $p_T > 15$ GeV, $|\eta| < 2.5$

Additional requirements:

- high quality primary vertex ($N_{tr} \ge 3$, |z| < 60 cm)
- triangular cut in $\Delta \phi(l, E_T)$ vs E_T
- second high p_T lepton isolation veto

Background estimation

$$N = N_{t\bar{t}} + N_W + N_{QCD} + N_S$$

$$N^{tag} = N_{t\bar{t}}^{tag} + N_W^{tag} + N_{QCD}^{tag} + N_S^{tag}$$

- subtract small backgrounds (single top, VV, $Z \rightarrow \tau^+\tau^-$) using known cross sections
- calculate QCD (non-W) contribution with matrix method
- separate W from $t\bar{t}$ using difference in their event tagging probabilities
- $t\bar{t}$ signal is observed as an excess in tagged events with ≥ 3 jets over background prediction

QCD background estimation: matrix method

- define a "loose" sample by relaxing the lepton quality cuts
- derive the QCD fraction from the measured probabilities for a "true" lepton $(\varepsilon_{W+t\bar{t}})$ and a "fake" lepton (ε_{QCD}) to go from the loose to the tight sample

$$N^{loose} = N^{loose}_{QCD} + N^{loose}_{W+t\bar{t}}$$
 $N^{tight} = \epsilon_{QCD}N^{loose}_{OCD} + \epsilon_{W+t\bar{t}}N^{loose}_{W+t\bar{t}}$

 method I: apply matrix method to the untagged sample, then

$$N_{OCD}^{tag} = P_{QCD}N_{QCD}$$

 P_{QCD} : probability to tag a QCD event, measured in data

 method II: apply matrix method directly to the tagged sample

- e+jets: QCD dominated by jets faking electrons
 - both methods are shown to give compatible results, use method I as having superior statistical precision
- μ+jets: QCD dominated by muons from semileptonic heavy flavor decays
 - have to use method II in absence of a reliable estimation for P_{QCD} in this case (QCD HF composition is different for low and high $\not\!E_T$)
 - caveat: smaller number of events on tagged sample leads to relatively large statistical error on N_{QCD}^{tag}

Event tagging probabilities

- this is the core of the analysis: separation of $t\bar{t}$ from the W+jets background is based on difference between their event tagging probabilities
- use kinematics of events from Monte Carlo
- obtain tagging probabilities on data, parameterize, and apply to jets in Monte Carlo in form of tag rate functions ε_J according to relevant jet flavors (J = b, c, light):

```
probability to have no tags: P_n^{NT} = \left\langle \prod_{k=1}^n (1 - \varepsilon_{J_k}(E_{Tk}, \eta_k)) \right\rangle
probability to have one tag: P_n^{ST} = \left\langle \sum_{m=1}^n \varepsilon_{J_m}(E_{Tm}, \eta_m) \prod_{k \neq m} (1 - \varepsilon_{J_k}(E_{Tk}, \eta_k)) \right\rangle
probability to have \geq 2 tags: P_n^{DT} = 1 - P_n^{NT} - P_n^{ST}
```

• probabilities averaged over MC samples implementing relevant corrections that might affect event topology (e.g. trigger efficiency)

Calculation of tagging effi ciencies

• general approach: begin with quantities measured in data, convert them to ε_J using scale factors (SF) derived on Monte Carlo

b-tagging efficiency:
$$\varepsilon_b = \varepsilon_b^{tagg} \varepsilon_{b \to \mu}^{data} SF_{b \to \mu}^b$$

c-tagging efficiency:
$$\varepsilon_c = \varepsilon_c^{tagg} \varepsilon_{b \to \mu}^{data} SF_{b \to \mu}^c$$

mis-tagging rate:
$$\varepsilon_l = \varepsilon_l^{tagg} \varepsilon_{neg}^{data} SF_l$$

- ε_J^{tagg} : taggability (probability for a jet to be taggable) measured in data and corrected for heavy flavor jets using factors derived on Monte Carlo
- $\varepsilon_{b \to \mu}^{data}$: b-tagging efficiency measured in data for jets with a muon inside
- ε_{neg}^{data} : negative tagging rate measured on data

Taggability

- only a jet that satisfies certain requirements on the number and minimum p_T of tracks associated with it can be tagged. These jets are called "taggable"
- taggability: the probability for a jet to be taggable

- the idea is to largely decouple the tagging efficiency from issues related to tracking inefficiencies and/or calorimeter noise problems
- taggability depends on event sample and is not fully modeled by Monte Carlo

taggability derived on preselected *e*+jets sample

Lifetime *b*-tagging methods

Counting Signed Impact Parameter (CSIP)

- count the number of tracks with large positive DCA significance S
- jet is positively tagged if it has
 - at least two tracks with S > 3, or
 - at least three tracks with S > 2

Secondary Vertex Tagger (SVT)

- explicitly reconstruct 3d vertices out of tracks in track-jets using build-up algorithm
- jet is tagged as a b-jet if the signed decay length significance $L_{xy} > 7$

b-tagging efficiency estimation: System 8

- measure b-tagging efficiency in data for jets with a muon inside
- have two samples with different heavy flavor fractions (increased by tagging the away jet)
- tag jets with two independent tagging algorithms: lifetime tag (LT = CSIP, SVT) and soft lepton tag (SLT = a muon with $p_T^{rel} > 0.7$ GeV inside a jet)

$$n = n_b + n_l$$

$$p = p_b + p_l$$

$$n^{LT} = n_b \varepsilon_{btag}^{LT} + n_l \varepsilon_{non-btag}^{LT}$$

$$p^{LT} = p_b \varepsilon_{btag}^{LT} + p_l \varepsilon_{non-btag}^{LT}$$

$$n^{SLT} = n_b \varepsilon_{btag}^{SLT} + n_l \varepsilon_{non-btag}^{SLT}$$

$$p^{SLT} = p_b \varepsilon_{btag}^{SLT} + n_l \varepsilon_{non-btag}^{SLT}$$

$$p^{SLT} = p_b \varepsilon_{btag}^{SLT} + p_l \varepsilon_{non-btag}^{SLT}$$

$$n^{both} = n_b \varepsilon_{btag}^{LT} \varepsilon_{btag}^{SLT} + n_l \varepsilon_{non-btag}^{LT} \varepsilon_{non-btag}^{SLT}$$

$$p^{both} = p_b \varepsilon_{btag}^{LT} \varepsilon_{btag}^{SLT} + p_l \varepsilon_{non-btag}^{LT} \varepsilon_{non-btag}^{SLT}$$

- dominant sources of systematics:
 - assumption on decorrelation between LT and SLT
 - assumption on independence of the b-tagging probability on whether or not the away jet is tagged

b-tagging efficiency in data

b-tagging efficiency in data (CSIP), similar efficiency measured for SVT

- the shape of the *b*-tagging efficiency is predicted by Monte Carlo
- the absolute value of the Monte Carlo prediction on the plot is normalized to data
- use the error band of the data fit to estimate the error on the b-tagging efficiency

b,c-tagging efficiency in Monte Carlo and scale factors

- what is measured in data is semileptonic b-tagging efficiency
- need inclusive b-tagging efficiency and inclusive c-tagging efficiency
- derive relevant scale factors on Monte Carlo

 $SF_{b\to\mu}^b=\varepsilon_b/\varepsilon_{b\to\mu}$: crucial, but close to 1 except for low jet E_T $SF_{b\to\mu}^c=\varepsilon_c/\varepsilon_{b\to\mu}$: significantly different from 1, but does not affect much the result

b-tagging efficiency in MC (CSIP)

c-tagging efficiency in MC (CSIP)

Mis-tagging rate

- begin with negative inclusive tag rate ε⁻ measured in data
 - use negative side of DCA significance distribution (CSIP) or negative decay length (SVT)

mis-tagging rate (SVT)

• convert ϵ^- to light tag rate ϵ_l^+ using scale factors determined on Monte Carlo: $SF_l = SF_{ll} \times SF_{hf} \sim 1$

$$SF_{ll} = \varepsilon_l^+/\varepsilon_l^-$$
 (long lived particles and fakes)

$$SF_{hf} = \varepsilon_l^-/\varepsilon^-$$
 (negative tag rate higher in HF jets)

Summary of tagging probabilities

CSIP					
	one tag	≥2 tags			
$t \bar t o l + {\sf jets}$	45.9±0.8%	15.8±0.3%			
W+light jets	2.60±0.06%	0.03±0.01%			

SVT						
	one tag	≥2 tags				
$t \bar t o l + {\sf jets}$	45.1±0.7%	13.9±0.1%				
W+light jets	1.14±0.01%	<0.01%				

probabilities to tag an *e*+jets event with at least 4 jets

W+jets background

• the number of W+jets events after tagging N_W^{tag} is related to the number of untagged W+jets events N_W as

$$N_W^{tag} = N_W P_W$$

where P_W is average W+jets event tagging probability:

$$P_{W} = \sum_{flavor} F_{flavor} P_{W}(flavor)$$

ullet need to mix W+jets with different jet flavors in the right proportions

How to get F_{flavor} ?

- use W+jets samples generated by ALPGEN 1.2 (CTEQ 6.1M) interfaced to PYTHIA 6.2 (CTEQ 5L)
- rely on the ratios of cross sections from Monte Carlo
- apply matching procedure to reduce double counting and sensitivity to parton generation cuts

before tagging single tags double tags

Fractions of W+jets subprocesses with different flavors in e+ \geq 4 jets before and after tagging (CSIP)

Contribution	W+1jet	W+2jets	W+3jets	W+≥4jets
$Wb ilde{b}$		(0.87 ± 0.05) %	$(1.34 \pm 0.09)\%$	(2.20 ± 0.17) %
$Wc ilde{c}$		(1.11 ± 0.08) %	(2.11 ± 0.16) %	(3.43 ± 0.46) %
$W(b ilde{b})$	(0.69 ± 0.02) %	$(1.23 \pm 0.04)\%$	(2.00 ± 0.08) %	(2.27 ± 0.82) %
$W(c ilde{c})$	(1.10 ± 0.05) %	(1.91 ± 0.07) %	(2.71 ± 0.18) %	$(3.4 \pm 1.2)\%$
Wc	$(4.50 \pm 0.17)\%$	$(6.80 \pm 0.27)\%$	(7.21 ± 0.36) %	$(5.30 \pm 0.35)\%$
W + jets(mistags)	$(93.7 \pm 2.8)\%$	$(88.1 \pm 2.8)\%$	$(84.6 \pm 3.4)\%$	$(83.4 \pm 2.5)\%$

Data sample: integrated luminosity

- this analysis: 169 pb⁻¹ (*e*+jets), 158 pb⁻¹ (*\mu*+jets)
- ullet now we have recorded \sim 500 pb $^{-1}$

Data sample: the number of events

	W+1jet	W+2jets	W+3jets	W+≥4jets
preselected	11586	4455	1105	295
CSIP: tagged	183	157	81	52
double tagged		11	7	8
SVT: tagged	119	128	76	49
double tagged		8	8	6

- work with four jet multiplicity bins
 - bins 1,2: use to control the background
 - bins 3,4: extract the $t\bar{t}$ production cross section

- cross section is extracted from a simultaneous likelihood fit to eight separate channels:
 - e+jets and μ +jets
 - events with 3 and \geq 4 jets
 - single and double tagged events

Observed vs predicted number of events: CSIP

signal prediction is shown for $\sigma_{t\bar{t}}$ =7 pb

Observed vs predicted number of events: SVT

signal prediction is shown for $\sigma_{t\bar{t}}$ =7 pb

The result

CSIP:
$$\sigma_{t\bar{t}} = 7.2^{+1.3}_{-1.2} (\text{stat})^{+1.9}_{-1.4} (\text{syst}) \pm 0.5 (\text{lumi}) \text{ pb}$$

SVT:
$$\sigma_{t\bar{t}} = 8.2^{+1.3}_{-1.3} \, (\mathrm{stat})^{+1.9}_{-1.6} \, (\mathrm{syst}) \pm 0.5 \, (\mathrm{lumi}) \, \mathrm{pb}$$

theoretical prediction (NNLO): 6.77 ± 0.42 pb (hep-ph 0309045)

- correlations / combination of taggers under study
- for each tagger, 60% of tags are also found by another one

Sources of systematics

- main sources of systematics:
 - jet energy scale, $\Delta\sigma_{t\bar{t}}\sim 1$ pb
 - b-tagging efficiency in data, $\Delta \sigma_{t\bar{t}} \sim 0.9$ pb
 - W fractions, $\Delta\sigma_{t\bar{t}}\sim0.8$ pb
- full list of systematic uncertainties:
- W fractions
- trigger efficiency
- primary vertex efficiency
- matrix method efficiencies
- object ID efficiency
- jet resolution
- jet energy scale

- heavy flavor tagging efficiency in MC
- semileptonic *b*-tagging efficiency in data
- taggability
- negative tag rate and light flavor SF
- fragmentation model
- assumption $SF_b = SF_c$
- top mass

Cross-checks: aplanarity, sphericity, transverse W mass

shown for SVT

Cross-checks: scalar sum of jet energies, leading jet η and p_T

shown for SVT

Conclusions

- we have measured the $t\bar{t}$ production cross section in lepton+jets channel with lifetime b-tagging
- two different methods were used to cross-check results
- this is the most precise measurement of the $t\bar{t}$ production cross section in DØ
- the result is in a good agreement with the Standard Model prediction

- the quoted systematic error is conservative, expect significant improvement
- now have 2-3 times more data, can reduce statistical and many systematic errors